A cubical 4-polytope with the graph of the 5-dimensional cube.
In [4] we showed that for arbitrary n>d there is a cubical d-polytope, which arises as a projection of a combinatorial n-cube, and whose [d/2-1]-skeleton is isomorphic to the [d/2-1]-skeleton of the n-dimensional cube. This solves a problem of Babson, Billera, and Chan [1].
The polytope whose Schlegel diagram is shown here is a member of this 2-parameter family where d=4 and n=5. Examples with d=2 and arbitrary n>2 have been constructed before by Goldfarb [3].
Model produced with: polymake 1.3.1
Keywords | cubical polytopes; graphs of polytopes | |
MSC-2000 Classification | 52B12 (52B11, 52B05) | |
Zentralblatt No. | 01682988 |
Submitted: Mon May 1 09:32:05 CET 2000.
Accepted: Mon Nov 20 17:06:57 CET 2000.
TU BerlinGünter M. Ziegler
Sekr. MA 7-1
Straße des 17. Juni 136
10623 Berlin
Germany
joswig@math.tu-berlin.de
http://www.math.tu-berlin.de/~joswig
TU Berlin
Sekr. MA 7-1
Straße des 17. Juni 136
10623 Berlin
Germany
ziegler@math.tu-berlin.de
http://www.math.tu-berlin.de/~ziegler